Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Polymeric bis(glycolato)nickel(II)

Qing-Qing Kang, La-Sheng Long, Rong-Bin Huang* and Lan-Sun **Zheng**

Department of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China

Correspondence e-mail: rbhuang@xmu.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.021 wR factor = 0.056 Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, poly[nickel(II)-bis(α -hydroxyacetato- $\kappa^3 O^1, O^2: O^{1'}$], [Ni(C₂H₃O₃)₂]_n, is isomorphous with the reported cobalt analogue. The Ni atom is located on a centre of inversion.

Received 4 March 2004 Accepted 11 March 2004 Online 20 March 2004

Comment

A cobalt complex of glycolate was reported by Medina et al. (2000). Recently, we synthesized a nickel complex of glycolate. Single-crystal X-ray diffraction analysis reveals that this complex is isomorphous with the cobalt analogue (Medina et al., 2000) The Ni atom is located on a centre of inversion.

In the title compound, (I) (Fig. 1), the Ni-O distance for the carboxy O atom (Ni-O2) is shorter than that for the α -hydroxy O atom (Ni1-O1), whereas the bond length between atom Ni1 and the axially coordinated atom $O3(-x+\frac{1}{2},y+\frac{1}{2},-z+\frac{3}{2})$ is slightly longer than those observed for the Ni-O bonds in the chelate ring (Table 1).

Experimental

An aqueous solution of Ni(NO₃)₂ (1 ml, 1 mmol ml⁻¹) was added to a solution (15 ml) containing glycollic acid (0.07 g, 1 mmol) in a mixed solvent of water and ethanol in the volume ratio 1:1. The pH value of the solution was adjusted to ~5 with NaOH solution. The resulting green solution was sealed into a stainless steel autoclave. The autoclave was heated slowly to 453 K over a period of 8 h and then cooled to 393 K at a rate of 1.5 K h⁻¹. The temperature was kept at 393 K for 75 h and then allowed to drop to 303 K over a period of 8 h. Green crystals of the title compound, suitable for X-ray diffraction, were obtained.

DOI: 10.1107/S1600536804005744

Crystal data

 $[Ni(C_2H_3O_3)_2]$ $M_r = 208.80$ Monoclinic, $P2_1/n$ a = 5.1304 (7) Åb = 7.6367 (11) Åc = 8.6076 (12) Å $\beta = 105.443 (2)^{\circ}$ $V = 325.06 (8) \text{ Å}^3$ Z = 2

 $D_r = 2.133 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 1462 reflections $\theta = 3.6 – 27.9^{\circ}$ $\mu = 2.96~{\rm mm}^{-1}$ T = 298 (2) KPrism, green $0.38 \times 0.20 \times 0.12 \text{ mm}$

© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

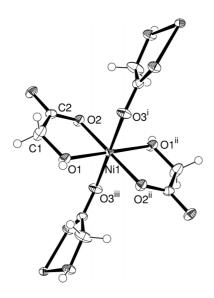


Figure 1

The coordination of the Ni^{II} ion in the title compound. Displacement ellipsoids are shown at the 50% probability level [symmetry codes: (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{3}{2} - z$; (ii) 1 - x, 2 - y, 2 - z; (iii) $\frac{1}{2} + x$, $\frac{3}{2} - y$, $\frac{1}{2} + z$].

Data collection

Bruker SMART APEX 2000 736 independent reflections diffractometer $R_{\rm int}=0.015$ φ and ω scans $\theta_{\rm max}=28.1^\circ$ Absorption correction: multi-scan $h = -5 \rightarrow 6$ $k = -7 \rightarrow 9$ (SADABS; Sheldrick, 1996) $T_{\min} = 0.399, T_{\max} = 0.718$ 1829 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.056$ S = 1.11736 reflections 52 parameters H-atom parameters constrained

702 reflections with $I > 2\sigma(I)$ $l = -10 \rightarrow 10$

 $w = 1/[\sigma^2(F_o^2) + (0.0283P)^2$ + 0.1923P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\text{max}} = 0.32 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.36 \text{ e Å}^{-3}$

Table 1 Selected geometric parameters (Å, °).

Ni1-O2 Ni1-O1	2.0095 (12) 2.0374 (12)	Ni1-O3 ⁱ	2.0899 (12)
O2-Ni1-O1 ⁱⁱ O2-Ni1-O1	99.99 (5) 80.01 (5)	$O1-Ni1-O3^i$	88.19 (5)

Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{3}{2} - z$; (ii) 1 - x, 2 - y, 2 - z.

Table 2 Hydrogen-bonding geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
O1-H1 <i>C</i> ···O3 ^{iv}	0.82	1.84	2.6568 (17)	177

Symmetry code: (iv) $x - \frac{1}{2}, \frac{3}{2} - y, \frac{1}{2} + z$.

H atoms were treated as riding, with C-H = 0.97 Å, O-H = 0.82 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(O)$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Fujian Institute of Research on the Structure of Materials (grant No. 020047).

References

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin,

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Medina, G., Gasque, L. & Bernès, S. (2000). Acta Cryst. C56, 637-638. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.